Solusi Persamaan Klein Gordon dengan Kombinasi Potensial Hiperbolik dalam 3D Koordinat Silinder
Abstract
Full Text:
PDFReferences
Biswas, B., & Debnath, S. (2013). Analytical solutions of the klein-gordon equation with position-dependent mass for generalized hulthen potential via asymptotic iteration method. African Review of Physics, 8, 195–200.
Cari, C., Dianawati, D. A., & Suparmi, A. (2019). Spatially q-deformed radial momentum of d-dimensional Klein-Gordon equation for Harmonic Oscillator plus Inverse Quadratic potential investigated using hypergeometric method. IOP Conference Series: Materials Science and Engineering, 578(1), 012092. https://doi.org/10.1088/1757-899X/578/1/012092
Cari, C., Suparmi, A., & Elviyanti, I. L. (2017). Approximate solution for the minimal length case of Klein Gordon equation for trigonometric cotangent potential using Asymptotic Iteration Method. Journal of Physics: Conference Series, 909, 012002. https://doi.org/10.1088/1742-6596/909/1/012002
Ciftci, H., Hall, R. L., & Saad, N. (2003). Asymptotic iteration method for eigenvalue problems. Journal of Physics A: Mathematical and General, 36(47), 11807–11816. https://doi.org/10.1088/0305-4470/36/47/008
Elviyanti, I. L., Pratiwi, B. N., Suparmi, A., & Cari, C. (2018). The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method. Advances in Mathematical Physics, 2018, 1–8. https://doi.org/10.1155/2018/9658679
Elviyanti, I. L., & Syukron, A. A. (2020). The minimal length case of the Klein Gordon equation with hyperbolic cotangent potential using Nikivorof-Uvarof Method. Journal of Physics: Theories and Applications, 4(1), 1. https://doi.org/10.20961/jphystheor-appl.v4i1.40669
Falaye, B. J. (2012). The Klein-Gordon equation with ring-shaped potentials: Asymptotic iteration method. Journal of Mathematical Physics, 53(8). https://doi.org/10.1063/1.4746697
Ikhdair, S. M. (2011). Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions. Journal of Quantum Information Science, 01(02), 73–86. https://doi.org/10.4236/jqis.2011.12011
Ikot, A. N., Akpabio, L. E., & Uwah, E. J. (2011). Bound State Solutions of the Klein Gordon Equation with the Hulth´en Potential. Electronic Journal of Theoretical Physics, 8(25), 225–232.
Momtazi, E., Rajabi, A. A., Yazarloo, B. H., & Hassanabadi, H. (2014). Analytical solution of the Klein--Gordon equation under the Coulomb-like scalar plus vector potential with the Laplace transforms approach. Turkish Journal of Physics, 38, 81–85. https://doi.org/10.3906/fiz-1305-7
Negro, J., Nieto, L. M., & Rosas-Ortiz, O. (2004). Regularized Scarf potentials: energy band structure and supersymmetry. Journal of Physics A: Mathematical and General, 37(43), 10079–10093. https://doi.org/10.1088/0305-4470/37/43/005
Nugraha, D. A., Suparmi, A., Cari, C., & Pratiwi, B. N. (2017). Asymptotic iteration method for analytical solution of Klein-Gordon equation for trigonometric Pӧschl-Teller potential in D-dimensions. Journal of Physics: Conference Series, 795, 012025. https://doi.org/10.1088/1742-6596/795/1/012025
Poszwa, A. (2014). Relativistic Generalizations of the Quantum Harmonic Oscillator. Acta Physica Polonica A, 126(6), 1226–1234. https://doi.org/10.12693/APhysPolA.126.1226
Pratiwi, B. N., Suparmi, A., Cari, C., & Anwar, F. (2016). Asymptotic iteration method for the eigenfunctions and eigenvalue analysis in Schrodinger equation with modified anisotropic nonquadratic potential. Journal of Physics: Conference Series, 776, 012090. https://doi.org/10.1088/1742-6596/776/1/012090
Roy, A. K. (2005). The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials. Pramana, 65(1), 1–15. https://doi.org/10.1007/BF02704371
Suparmi. (2011). Mekanika Kuantum I. Jurusan Fisika MIPA Universitas Sebelas Maret.
Suparmi, A. (2013). Energy Spectra and Wave Function Analysis of q-Deformed Modified Poschl-Teller and Hyperbolic Scarf II Potentials Using NU Method and a Mapping Method. Advances in Physics Theories and Applications, 16. https://doi.org/10.7176/APTA-16-8
Suparmi, A., Cari, C., & Elviyanti, I. L. (2018). Analysis of Eigenvalue and Eigenfunction of Klein Gordon Equation Using Asymptotic Iteration Method for Separable Non-central Cylindrical Potential. Journal of Physics: Conference Series, 1011, 012086. https://doi.org/10.1088/1742-6596/1011/1/012086
Suparmi, S., Dianawati, D. A., & Cari, C. (2019). Solution of Q-Deformed D-Dimensional Klein-Gordon Equation Kratzer Potential using Hypergeometric Method. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 9(2), 163. https://doi.org/10.26740/jpfa.v9n2.p163-177
Varshni, Y. P. (1990). Eigenenergies and oscillator strengths for the Hulthén potential. Physical Review A, 41(9), 4682–4689. https://doi.org/10.1103/PhysRevA.41.4682
DOI: https://doi.org/10.30998/sch.v5i1.11504
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Isnaini Lilis Elviyanti, Ahmad Aftah Syukron
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Publisher:
UNIVERSITAS INDRAPRASTA PGRI
Address: Department of Physics Education | (Kampus A) TB. Simatupang, Jl. Nangka Raya No.58 C, RT.5/RW.5, Tj. Bar., Kec. Jagakarsa, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12530, Indonesia | (Kampus B) Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760, Indonesia
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
E-mail: kampus@unindra.ac.id
Schrodinger Jurnal Ilmiah Mahasiswa Pendidikan Fisika is licensed under a Creative Commons Attribution 4.0 International License.