Solusi Persamaan Klein Gordon dengan Kombinasi Potensial Hiperbolik dalam 3D Koordinat Silinder

Isnaini Lilis Elviyanti, Ahmad Aftah Syukron

Abstract


This research focuses on the relativistic energy and wave function for spin-zero particles using the Klein-Gordon Equation influenced by a combination of hyperbolic potentials, specifically the Hultén potential and the hyperbolic Scarf potentials type I and II. The main problem addressed is how to solve the Klein-Gordon Equation under anti-particle conditions, where the scalar potential is equal to the negative vector potential, and in separable non-central cylindrical coordinates.The objective of this research is to determine the relativistic energy and wave function of spin-zero particles under the mentioned conditions. To achieve this objective, the asymptotic iteration method (AIM) is used to solve the Klein-Gordon Equation, which has been reduced to three one-dimensional Schrödinger equations. This approach allows for the separation of variables in cylindrical coordinates, breaking the three-dimensional non-central cylindrical potential into radial (r), angular (θ), and axial (z) components.The results of the research indicate that the relativistic energy and wave function can be obtained using the AIM. The relativistic energy is derived from the radial component, and the wave function is presented in the form of a hypergeometric equation. These results are presented as equations that show the relationship between energy and wave function with the involved variables.





Full Text:

PDF

References


Biswas, B., & Debnath, S. (2013). Analytical solutions of the klein-gordon equation with position-dependent mass for generalized hulthen potential via asymptotic iteration method. African Review of Physics, 8, 195–200.

Cari, C., Dianawati, D. A., & Suparmi, A. (2019). Spatially q-deformed radial momentum of d-dimensional Klein-Gordon equation for Harmonic Oscillator plus Inverse Quadratic potential investigated using hypergeometric method. IOP Conference Series: Materials Science and Engineering, 578(1), 012092. https://doi.org/10.1088/1757-899X/578/1/012092

Cari, C., Suparmi, A., & Elviyanti, I. L. (2017). Approximate solution for the minimal length case of Klein Gordon equation for trigonometric cotangent potential using Asymptotic Iteration Method. Journal of Physics: Conference Series, 909, 012002. https://doi.org/10.1088/1742-6596/909/1/012002

Ciftci, H., Hall, R. L., & Saad, N. (2003). Asymptotic iteration method for eigenvalue problems. Journal of Physics A: Mathematical and General, 36(47), 11807–11816. https://doi.org/10.1088/0305-4470/36/47/008

Elviyanti, I. L., Pratiwi, B. N., Suparmi, A., & Cari, C. (2018). The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method. Advances in Mathematical Physics, 2018, 1–8. https://doi.org/10.1155/2018/9658679

Elviyanti, I. L., & Syukron, A. A. (2020). The minimal length case of the Klein Gordon equation with hyperbolic cotangent potential using Nikivorof-Uvarof Method. Journal of Physics: Theories and Applications, 4(1), 1. https://doi.org/10.20961/jphystheor-appl.v4i1.40669

Falaye, B. J. (2012). The Klein-Gordon equation with ring-shaped potentials: Asymptotic iteration method. Journal of Mathematical Physics, 53(8). https://doi.org/10.1063/1.4746697

Ikhdair, S. M. (2011). Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions. Journal of Quantum Information Science, 01(02), 73–86. https://doi.org/10.4236/jqis.2011.12011

Ikot, A. N., Akpabio, L. E., & Uwah, E. J. (2011). Bound State Solutions of the Klein Gordon Equation with the Hulth´en Potential. Electronic Journal of Theoretical Physics, 8(25), 225–232.

Momtazi, E., Rajabi, A. A., Yazarloo, B. H., & Hassanabadi, H. (2014). Analytical solution of the Klein--Gordon equation under the Coulomb-like scalar plus vector potential with the Laplace transforms approach. Turkish Journal of Physics, 38, 81–85. https://doi.org/10.3906/fiz-1305-7

Negro, J., Nieto, L. M., & Rosas-Ortiz, O. (2004). Regularized Scarf potentials: energy band structure and supersymmetry. Journal of Physics A: Mathematical and General, 37(43), 10079–10093. https://doi.org/10.1088/0305-4470/37/43/005

Nugraha, D. A., Suparmi, A., Cari, C., & Pratiwi, B. N. (2017). Asymptotic iteration method for analytical solution of Klein-Gordon equation for trigonometric Pӧschl-Teller potential in D-dimensions. Journal of Physics: Conference Series, 795, 012025. https://doi.org/10.1088/1742-6596/795/1/012025

Poszwa, A. (2014). Relativistic Generalizations of the Quantum Harmonic Oscillator. Acta Physica Polonica A, 126(6), 1226–1234. https://doi.org/10.12693/APhysPolA.126.1226

Pratiwi, B. N., Suparmi, A., Cari, C., & Anwar, F. (2016). Asymptotic iteration method for the eigenfunctions and eigenvalue analysis in Schrodinger equation with modified anisotropic nonquadratic potential. Journal of Physics: Conference Series, 776, 012090. https://doi.org/10.1088/1742-6596/776/1/012090

Roy, A. K. (2005). The generalized pseudospectral approach to the bound states of the Hulthén and the Yukawa potentials. Pramana, 65(1), 1–15. https://doi.org/10.1007/BF02704371

Suparmi. (2011). Mekanika Kuantum I. Jurusan Fisika MIPA Universitas Sebelas Maret.

Suparmi, A. (2013). Energy Spectra and Wave Function Analysis of q-Deformed Modified Poschl-Teller and Hyperbolic Scarf II Potentials Using NU Method and a Mapping Method. Advances in Physics Theories and Applications, 16. https://doi.org/10.7176/APTA-16-8

Suparmi, A., Cari, C., & Elviyanti, I. L. (2018). Analysis of Eigenvalue and Eigenfunction of Klein Gordon Equation Using Asymptotic Iteration Method for Separable Non-central Cylindrical Potential. Journal of Physics: Conference Series, 1011, 012086. https://doi.org/10.1088/1742-6596/1011/1/012086

Suparmi, S., Dianawati, D. A., & Cari, C. (2019). Solution of Q-Deformed D-Dimensional Klein-Gordon Equation Kratzer Potential using Hypergeometric Method. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 9(2), 163. https://doi.org/10.26740/jpfa.v9n2.p163-177

Varshni, Y. P. (1990). Eigenenergies and oscillator strengths for the Hulthén potential. Physical Review A, 41(9), 4682–4689. https://doi.org/10.1103/PhysRevA.41.4682




DOI: https://doi.org/10.30998/sch.v5i1.11504

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Isnaini Lilis Elviyanti, Ahmad Aftah Syukron

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Publisher:
UNIVERSITAS INDRAPRASTA PGRI

Address: Department of Physics Education | (Kampus A) TB. Simatupang, Jl. Nangka Raya No.58 C, RT.5/RW.5, Tj. Bar., Kec. Jagakarsa, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12530, Indonesia | (Kampus B) Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760, Indonesia
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
E-mail: kampus@unindra.ac.id

 

Creative Commons License
Schrodinger Jurnal Ilmiah Mahasiswa Pendidikan Fisika is licensed under a Creative Commons Attribution 4.0 International License.