SISTEM PAKAR TROUBLESHOOTING ERP ODOO PADA PT LIMASAN MAHARDHIKA SOLUTION DENGAN METODE FORWARD CHAINING

e-ISSN: 2715-8756

Mochamad Ari Pratama¹, Caka Gatot Priambodo², Didik Nur Huda³

Program Studi Teknik Informatika, Fakultas Teknik dan Ilmu Komputer Universitas Indraprasta PGRI

Jalan Raya Tengah No 80, Kelurahan Gedong, Pasar Rebo, Jakarta Timur aripra728391@gmail.com¹, cgpriambodo@gmail.com², didiks.physics@gmail.com³

Abstrak

Jurnal ini bertujuan mengembangkan sistem pakar troubleshooting berbasis forward chaining untuk ERP Odoo di PT Limasan Mahardhika Solution, sebuah perusahaan konsultan IT yang fokus pada solusi teknologi informasi untuk rumah sakit. Kompleksitas ERP Odoo sering menimbulkan masalah teknis seperti kesalahan konfigurasi modul, konflik antar modul, dan bug pasca pembaruan yang mengganggu operasional rumah sakit. Sistem pakar ini dirancang untuk membantu tim teknis melakukan troubleshooting secara efektif dengan penalaran berbasis aturan dari kondisi awal ke solusi. Tahapan penelitian meliputi identifikasi masalah umum dalam implementasi Odoo, pengembangan basis pengetahuan berisi aturan troubleshooting, dan implementasi sistem pakar. Hasil penelitian menunjukkan bahwa sistem pakar dapat mengurangi waktu troubleshooting, meningkatkan efisiensi penyelesaian masalah teknis, dan mengurangi downtime sistem ERP. Temuan baru adalah efektivitas forward chaining dalam mendeteksi dan menyelesaikan masalah teknis dalam ERP Odoo dengan cepat dan akurat. Penelitian ini berkontribusi pada peningkatan layanan IT PT Limasan Mahardhika Solution dan memberikan nilai tambah bagi rumah sakit.

Kata Kunci: ERP, Odoo, Troubleshooting

Abstract

This journal aims to develop an expert system for troubleshooting ERP Odoo using the forward chaining method at PT Limasan Mahardhika Solution, an IT consulting company specializing in technology solutions for hospitals. The complexity of ERP Odoo often leads to technical issues such as module configuration errors, module conflicts, and bugs following system updates, which can disrupt hospital operations. This expert system is designed to assist the technical team in troubleshooting effectively by using rule-based reasoning from initial conditions to the desired solutions. The research stages include identifying common problems in Odoo implementation, developing a knowledge base containing troubleshooting rules, and implementing the expert system. The results show that the expert system can significantly reduce troubleshooting time, improve the efficiency of technical problem resolution, and decrease ERP system downtime. The key finding is the effectiveness of the forward chaining method in quickly and accurately detecting and resolving various technical issues in ERP Odoo. This research contributes to enhancing the IT services provided by PT Limasan Mahardhika Solution and adds value to hospital operations.

Keyword: ERP, Odoo, Troubleshooting

PENDAHULUAN

Enterprise Resource Planning (ERP) merupakan sistem penting dalam pengelolaan operasional perusahaan, termasuk di sektor kesehatan. Odoo, sebagai salah satu platform ERP open-source yang banyak digunakan oleh PT Limasan Mahardhika Solution, menghadirkan fleksibilitas dalam integrasi berbagai modul. Namun, kompleksitasnya sering menimbulkan masalah teknis seperti kesalahan konfigurasi, konflik antar modul, dan bug pasca pembaruan yang dapat mengganggu operasional rumah sakit (Firmansyah, 2021). Untuk mengatasi masalah ini, diperlukan sistem yang mampu melakukan troubleshooting secara efektif. Sistem pakar, yang merupakan aplikasi kecerdasan buatan, dapat meniru proses pengambilan keputusan dari seorang pakar dalam menyelesaikan masalah spesifik (Manik & Sianturi, 2021). Metode forward chaining dipilih karena

kemampuannya dalam menelusuri aturan dari kondisi awal hingga solusi, menjadikannya cocok untuk menangani masalah troubleshooting teknis. (Manik & Sianturi, 2021)

Berdasarkan latar belakang tersebut, penelitian ini berfokus pada pengembangan sistem pakar troubleshooting berbasis forward chaining yang dapat membantu tim teknis PT Limasan Mahardhika Solution dalam menyelesaikan masalah teknis pada ERP Odoo dengan cepat dan akurat.(Sari dkk., 2020) Rumusan masalah dalam penelitian ini meliputi bagaimana mengembangkan basis pengetahuan yang efektif untuk troubleshooting Odoo menggunakan forward chaining serta mengukur efektivitas sistem pakar dalam mengurangi waktu troubleshooting dan meningkatkan efisiensi penyelesaian masalah. Penelitian ini juga bertujuan untuk mengurangi downtime sistem ERP dan meningkatkan efisiensi operasional rumah sakit.(Handoko, 2022)

Hasil penelitian ini diharapkan dapat memberikan kontribusi signifikan dalam peningkatan kualitas layanan IT di PT Limasan Mahardhika Solution. Dengan adanya sistem pakar ini, waktu troubleshooting dapat berkurang secara signifikan, sehingga meningkatkan kinerja operasional rumah sakit yang menggunakan ERP Odoo. Penelitian ini juga memberikan nilai tambah dalam pengembangan sistem pakar di bidang IT, terutama dalam aplikasi troubleshooting pada sistem ERP, serta berkontribusi terhadap peningkatan layanan teknologi informasi yang lebih andal dan efisien.(Supriyono & Chasanah, 2023)

PENELITIAN RELEVAN

Tabel 1. Penelitian Relevan

No	Peneliti (Tahun)	Judul Penelitian	Metode Penelitian	Hasil Penelitian	Analisis Relevansi
1	(Marsandi dkk., 2024)	Sistem Pakar Deteksi Kerusakan Laptop Menggunakan Algoritma Forward Chaining Dan Backward Chaining	Forward Chaining dan Backward Chaining	Metode efektif dalam diagnosis dan perbaikan kerusakan laptop	Menunjukkan bahwa kombinasi metode inference dapat memperkuat akurasi diagnosis, relevan untuk sistem troubleshooting teknis seperti ERP
2	(Darmawan & Budiyanto, 2023)	Sistem Pakar Diagnosa Penyakit Tanaman Jambu Biji Menggunakan Metode Forward Chaining	Forward Chaining	Hasil menunjukan petani dapat segera mencegah penyakit pada tanaman jambu biji	Meskipun pada domain pertanian, struktur diagnosis berbasis gejala serupa dengan troubleshooting sistem ERP
3	(Pere & Prasetyaningru m, 2023)	Sistem Pakar Diagnosa Kerusakan Kendaraan Sepeda Motor Manual Menggunakan Metode Forward Chaining	Forward Chaining	Hasil menunjukan dalam melakukan diagnose menjadi lebih cepat dan efektif	Menunjukkan bahwa forward chaining cocok untuk sistem berbasis aturan dan gejala-gejala teknis yang kompleks
4	(Susanto dkk., 2023)	Application Of Expert System For Identification Of Damage To Computers With Web- Based Forward Chaining Method	Forward Chaining	Hasil menunjukan dapat melakukan diagnosa dan perbaikan lebih cepat	Paling relevan karena konteksnya dalam troubleshooting perangkat keras komputer yang sejalan dengan teknis ERP
5	(Jarti, 2019)	Sistem Pakar Dalam Mendeteksi Kerusakan Tv Menggunakan Metode Forward Chaining Berbasis Android	Forward Chaining	Diagnosa kerusakan Tv dapat di lakukan secarta mandiri dan juga lebih mudah dan lebih cepat	Relevan dalam konteks antarmuka pengguna dan efisiensi, terutama jika sistem pakar ERP dikembangkan berbasis web atau mobile

e-ISSN: 2715-8756

METODE PENELITIAN

Penelitian berlangsung selama 4 bulan di PT LMS, rincian penelitian sebagai berikut:

1. Analisis Kebutuhan

Kegiatan ini dilaksanakan pada minggu pertama hingga minggu kedua bulan pertama. Pada tahap ini, peneliti mengidentifikasi kebutuhan pengguna dan merumuskan masalah yang akan diselesaikan melalui pengembangan sistem.

2. Studi Kepustakaan

Studi literatur dilakukan bersamaan dengan analisis kebutuhan, yaitu dari minggu ketiga hingga minggu kedua bulan kedua. Tahapan ini mencakup penelusuran jurnal, buku, dan sumber ilmiah lainnya yang relevan dengan topik penelitian.

3. Pengumpulan Data dan Perancangan Sistem

Tahap ini berlangsung dari minggu kedua bulan kedua hingga minggu keempat bulan kedua. Pengumpulan data dilakukan melalui wawancara, observasi, dan dokumentasi. Data tersebut digunakan untuk menyusun rancangan sistem.

4. Implementasi dan Pengkodean

Proses implementasi sistem dan pengkodean dilakukan dari minggu pertama bulan ketiga hingga minggu kedua bulan keempat. Pada tahap ini, rancangan sistem yang telah dibuat mulai diwujudkan dalam bentuk perangkat lunak. Penggunaan bahasa pemrograman dan framework mengikuti standar yang telah dirancang sebelumnya.

5. Pengujian

Kegiatan pengujian sistem dilakukan dari minggu kedua di bulan keempat hingga miggu keempat bulan keempat. Pengujian dilakukan untuk memastikan bahwa sistem berjalan sesuai dengan kebutuhan dan bebas dari kesalahan. Metode pengujian yang digunakan adalah blackbox testing dan white-box testing.

6. Penulisan Laporan

Penulisan laporan dilakukan dari minggu kedua bulan kedua hingga minggu keempat di bulan keempat. Tahap ini mencakup penyusunan hasil penelitian, pembahasan, dan simpulan akhir.

Tahapan Penelitian

Tahapan penelitian dalam penelitian ini meliputi beberapa tahap sebagai berikut:

Gambar 1. Tahapan Penelitian

Algoritma

1. Pre-processing Data

Pre-processing data merupakan tahap awal yang sangat penting dalam mempersiapkan informasi yang akan digunakan oleh sistem pakar berbasis algoritma forward chaining. Dalam penelitian ini, proses pre-processing diawali dengan pengumpulan data yang dilakukan melalui beberapa sumber utama, antara lain laporan permasalahan dari pengguna sistem ERP Odoo, hasil wawancara dengan pakar yang memiliki pengalaman dalam menangani permasalahan teknis pada sistem tersebut, serta dokumentasi internal dari sistem yang sedang dikaji. Data yang dikumpulkan mencakup deskripsi permasalahan, gejala-gejala yang diamati oleh pengguna, serta solusi yang sebelumnya telah diterapkan.

Setelah data berhasil dikumpulkan, tahap selanjutnya adalah pembersihan data. Pada tahap ini, data yang tidak relevan, tidak konsisten, atau bersifat duplikat diidentifikasi dan disaring. Proses ini dilakukan untuk memastikan bahwa hanya informasi yang valid, akurat, dan sesuai konteks yang akan digunakan dalam tahap penalaran sistem pakar. Pembersihan data dilakukan secara manual dan semi-otomatis, terutama dengan mencocokkan kembali data yang diperoleh dari pengguna dengan catatan teknis yang ada di sistem ERP.

Langkah terakhir dalam *pre-processing* adalah transformasi data. Data yang telah dibersihkan kemudian diklasifikasikan dan dikonversi ke dalam format yang dapat diproses secara efisien oleh sistem pakar. Dalam penelitian ini, gejala-gejala serta solusi dikategorikan berdasarkan jenis permasalahan dan masing-masing diberi kode identifikasi khusus. Kode-kode ini digunakan untuk mempermudah proses pencocokan aturan dan penalaran dalam algoritma forward chaining yang digunakan oleh sistem.

2. Pengolahan Data dengan Algoritma Forward Chaining

Setelah data diproses langkah selanjutnya dalam penelitian ini adalah menerapkan algoritma forward chaining untuk menyimpulkan solusi atas masalah yang dihadapi pengguna. Algoritma ini diterapkan dengan menggunakan kumpulan fakta awal yang diperoleh dari input pengguna, berupa gejala-gejala yang mereka laporkan melalui antarmuka sistem. Sistem kemudian mencocokkan fakta-fakta ini dengan aturan-aturan yang telah disusun dalam basis pengetahuan. Setiap aturan terdiri dari bagian kondisi (IF) dan konsekuensi (THEN) yang telah dirancang berdasarkan konsultasi dengan pakar.

Jika kondisi dari suatu aturan terpenuhi oleh fakta yang tersedia, maka konsekuensinya akan dijalankan. Dalam konteks penelitian ini, konsekuensi tersebut berupa penambahan fakta baru ke dalam basis fakta atau langsung menghasilkan suatu diagnosis atau rekomendasi tindakan. Proses pencocokan dan eksekusi ini berlangsung secara iteratif: sistem terus memeriksa aturan-aturan lainnya sampai tidak ada lagi aturan yang dapat diterapkan, atau hingga tercapai kesimpulan akhir.

Melalui pendekatan ini, sistem pakar yang dikembangkan dalam penelitian ini mampu menghasilkan solusi berdasarkan proses penalaran otomatis, yang sepenuhnya berbasis pada data input dan struktur logika dari aturan yang telah disusun sebelumnya.

HASIL DAN PEMBAHASAN

Dalam pembuatan sistem pakar merlukan master data menu , submenu, error dan solusi, sehingga sistem dapat melakukan pengecekan pada data tersebut untuk menentukan solusi terbaik dari permasalahan yang di alami.

Tabel 2. Menu

Kode	Menu	
LC000	L.Clinic	
LP000	L.Pharma	
ACC000	Accounting	
PCH000	Purchase	

Tabel 3. Submenu

Kode Menu	Kode	Jenis Submenu	
LC000	LC001	Antrean BPJS	
LC000	LC002	Pendaftaran	
LC000	LC003	Poli	
LP000	LP001	Transaksi <i>Pharma</i>	
ACC000	ACC001	Invoice	
PCH000	PCH001	Request for Quotation	

Tabel 4. Error Code dan solusi

Kode Menu	Kode	Kode	Error	Solusi
	Submenu			
LC000	LC001	LC0011	Tidak bisa	Lakukan
			melakukan Ambil	Pengecekan pada
			Antrean	configuration Api
				Pcare
LC000	LC002	LC0021	Invalid fields	Perhatikan pada
				error, error
				menunjukan field
				yang harus di isi
LC000	LC003	LC0031	Number is Not	Perbaiki No Phone
			defined	pada data Contact
LC000	LC003	LC0032	Field not found	Upgrade module
				lclinic
LP000	LP001	LP0011	Number is Not	Perbaiki No Phone
			defined	pada data Contact
LP000	LP001	LP0012	Field not found	Upgrade module
				Farmasi
ACC000	ACC001	ACC00	Phone pada data	Perbaiki No Phone
		11	Customer belum di	pada data Contact
			input	** 1 11
ACC000	ACC001	ACC00	Field not found	<i>Upgrade</i> module
D GTTOOO	D CITTO A	12	a 15.	Acounting
PCH000	PCH001	PCH00	Google Drive	Periksa configurasi
		11	Configuration	google drive,
			Belum Ada	pastikan sudah
D GTTOOO	D CITTO A	D CTTOO	T. 11 0 1	tepat
PCH000	PCH001	PCH00	Field not found	<i>Upgrade</i> module
		12		purchase

Berikut Rule yang diterapkan pada sistem pakar:

Rule 1: IF LC000 is True,

AND LC001 is True,

AND LC0011 is True,

THEN Lakukan Pengecekan pada configuration Api Pcare.

Rule 2: IF LC000 is True,

AND LC002 is True.

AND LC0021 is True,

THEN Perhatikan pada error, error menunjukan field yang harus di isi.

Rule 3: IF LC000 is True,

AND LC003 is True,

AND LC0031 is True,

THEN Perbaiki No Phone pada data Contact.

Rule 4: IF LC000 is True,

AND LC003 is True,

AND LC0032 is True,

THEN Upgrade module lclinic.

Rule 5: IF LP000 is True,

AND LP001 is True,

AND LP0011 is True,

THEN Perbaiki No Phone pada data Contact.

Rule 6: IF LP000 is True,

AND LP001 is True,

AND LP0012 is True,

THEN Upgrade module Farmasi.

Rule 7: IF ACC000 is True,

AND ACC001 is True,

6 No 03 Tahun 2025 e-ISSN : 2715-8756

AND ACC0011 is True,

THEN Perbaiki No Phone pada data Contact.

Rule 8: IF ACC000 is True,

AND ACC001 is True,

AND ACC0012 is True,

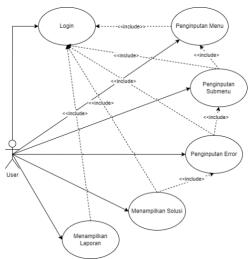
THEN Upgrade module Acounting.

Rule 9: IF PCH000 is True,

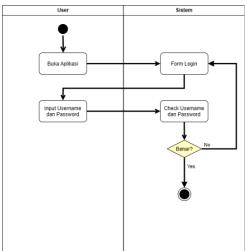
AND PCH001 is True,

AND PCH0011 is True,

THEN Periksa configurasi google drive, pastikan sudah tepat.

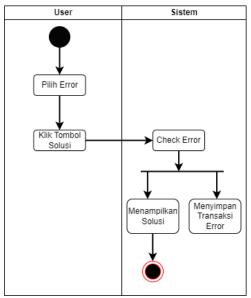

Rule 10: IF PCH000 is True,

AND PCH001 is True,

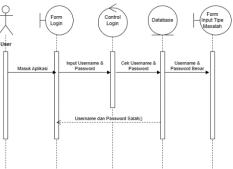

AND PCH0012 is True,

THEN Upgrade module purchase

Berikut adalah *Use Case Diagram* Sistem Pakar Troubleshooting ERP ODOO pada PT Limasan Mahrdhika Solution:

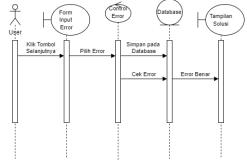


Gambar 2. Use Case Diagram


Gambar 3. Activity Diagram Login

Activity diagram login menjelaskan proses yang dilakukan oleh user untuk masuk ke dalam sistem, dimana User harus memasukkan username dan password kemudian sistem melakukan cek username dan password yang dimasukan untuk masuk ke halaman utama aplikasi

Gambar 4. Activity Diagram Penginputan Error


Activity Diagram Penginputan Error menjelaskan Proses penginputan error yang ingin di cari solusinya, dimana user harus memasukan error dan kemudian sistem akan melakukan pengecekan. Jika Hasil di temukan maka akan menampilkan solusi, jika tidak di temukan maka tidak menampilkan solusi.

okan proses vena dilakukan alah *usar* untuk

Sequence diagram login menjelaskan proses yang dilakukan oleh user untuk masuk ke dalam sistem, dimana User harus memasukkan username dan password kemudian sistem melakukan cek username dan password yang dimasukan untuk masuk ke halaman utama aplikasi

Gambar 5. Sequence Diagram Login

Gambar 6. Sequence Diagram Penginputan Error

Sequence Diagram Penginputan Error menjelaskan Proses penginputan error yang ingin di cari solusinya, dimana user harus memasukan error dan kemudian sistem akan melakukan pengecekan. Jika Hasil di temukan maka akan menampilkan solusi, jika tidak di temukan maka tidak menampilkan solusi.

e-ISSN : 2715-8756

Berdasarkan hasil dari rancangan UML sistem pakar *troubleshooting* ERP Odoo pada PT LMS yang dibuat, maka berikut adalah tampilan layar aplikasi sistem pakar *troubleshooting* ERP ODOO pada PT LMS:

Gambar 7. Tampilan halaman Login

Tampilan halaman *login* berisi logo, *username*, *password*, dan tombol *login*. Pengguna menginputkan *username* dan *password* masing untuk masuk ke aplikasi.

Gambar 8. Tampilan halaman Input Menu, Submenu dan Error

Berisi menu beranda, riwayat dan laporan. Tedapat kolom menu, submenu, input *error* dan tombol solusi untuk membuka solusi berdasar menu, submenu, dan *error* yang sudah di input sebelumnya.

Gambar 9. Tampilan Cetak Laporan Rekapitulasi Kerusakan Menu L.Clinic Perbulan

Tampilan cetak laporan rekapitulasi kerusakan menu l.clinic perbulan berisi *header*, isi dan TTD. Tedapat tabel untuk menampilkan riwayat pencarian solusi pada menu L.Clinic

e-ISSN : 2715-8756

SIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan, beberapa kesimpulan utama dapat diambil sebagai berikut: Sistem pakar troubleshooting ERP Odoo yang dikembangkan dengan metode forward chaining terbukti efektif dalam mengidentifikasi dan menyelesaikan masalah konfigurasi modul, integrasi data antar modul, serta bug dan error pasca pembaruan sistem di rumah sakit. Implementasi sistem pakar ini berhasil mengurangi waktu downtime dan meningkatkan efisiensi operasional, mendukung kelancaran aktivitas harian dan pelayanan terhadap pasien. Penelitian ini juga memberikan kontribusi signifikan dalam meningkatkan responsivitas dan akurasi layanan troubleshooting yang disediakan oleh PT Limasan Mahardhika Solution (LMS) untuk klien-klien rumah sakit mereka. Selain itu, metode forward chaining terbukti valid dan efektif dalam menyusun langkah-langkah troubleshooting secara sistematis, memungkinkan penyelesaian masalah dengan lebih cepat dan akurat. Namun, penelitian ini memiliki keterbatasan pada modulmodul yang dianalisis dan lingkup penerapan yang hanya mencakup rumah sakit sebagai klien PT LMS, sehingga hasilnya mungkin tidak sepenuhnya dapat digeneralisasi untuk semua rumah sakit atau modul ERP Odoo lainnya.

DAFTAR PUSTAKA

- Darmawan, S. C., & Budiyanto, N. E. (2023). Sistem Pakar Diagnosa Penyakit Tanaman Jambu Biji Menggunakan Metode Forward Chaining. *Prosiding Sains Nasional Dan Teknologi*, 13(1), 280. https://doi.org/10.36499/psnst.v13i1.9513
- Firmansyah, Y. (2021). Perancangan Aplikasi Sistem Parkir Otomatis menggunakan ERP Odoo Berbasis Internet of Things. *Jurnal Sains Dan Informatika*, 7(1), 8–16. https://doi.org/10.22216/jsi.v7i1.233
- Handoko, R. T. (2022). Aplikasi Diagnosa Kerusakan Pada Handphone Menggunakan Metode Forward Chaining. *Jurnal Teknologi Pintar*, 2(5), 1–11. http://teknologipintar.org/index.php/teknologipintar/article/view/176%0Ahttp://teknologipintar.org/index.php/teknologipintar/article/download/176/163
- Jarti, N. (2019). Sistem Pakar Dalam Mendeteksi Kerusakan Tv Menggunakan Metode Forward Chaining Berbasis Android. *Jurnal Teknik Ibnu Sina (JT-IBSI)*, 4(1), 17–24. https://doi.org/10.36352/jt-ibsi.v4i1.189
- Manik, A., & Sianturi, F. A. (2021). Sistem Pakar Mendeteksi Kerusakan Pada Equipment Dengan Menggunakan Metode Forward Chaining. *JIKOMSI [Jurnal Ilmu Komputer Dan Sistem Informasi]*, 3(3), 183–191.
- Marsandi, A. F., Pratama, A. R., Kusumaningrum, D. S., & Rohana, T. (2024). Sistem Pakar Deteksi Kerusakan Laptop Menggunakan Algoritma Forward Chaining Dan Backward Chaining. 5(1), 49–56. https://doi.org/10.30865/klik.v5i1.2041
- Pere, F. X., & Prasetyaningrum, P. T. (2023). Sistem Pakar Diagnosa Kerusakan Kendaraan Sepeda Motor Manual Menggunakan Metode Forward Chaining. *Journal of Computer and Information Systems Ampera*, 4(2). https://journal-computing.org/index.php/journal-cisa/index
- Sari, M., Defit, S., & Nurcahyo, G. W. (2020). Sistem Pakar Deteksi Penyakit pada Anak Menggunakan Metode Forward Chaining. *Jurnal Sistim Informasi Dan Teknologi*, 2, 130–135. https://doi.org/10.37034/jsisfotek.v2i4.34
- Supriyono, S., & Chasanah, N. (2023). Software Development Project Management Based on Work Breakdown Structure and Odoo Erp. *Jurnal Teknik Informatika (Jutif)*, 4(4), 893–898. https://doi.org/10.52436/1.jutif.2023.4.4.1077
- Susanto, F., Hadi, H. S., Dinata, R. M., Surya, S., Program, I., Teknik Informatika, S., Sains, I., & Nasional, D. T. (2023).
 Sistem Pakar Identifikasi Kerusakan Komputer (Ferry Susanto) | 312 Application Of Expert System For Identification Of Damage To Computers With Web-Based Forward Chaining Method. *Jurnal Ilmiah Informatika Dan Komputer Surya Intan (JIIKSI)*, 10, 312–323.